科目简介-凯发在线

澳 门 科 技 大 学

应用数学与数据科学硕士学位课程

必修科目:

mimz01 数据科学中的数学方法(3 学分)

本课程将主要介绍数据科学中常用的数学方法,主要内容包括:凸优化的定义、概念,以及凸分析和一些结果,凸优化在概率统计、计算几何以及数据拟合中的广泛应用,求解凸优化问题的数值方法,包括牛顿法以及内点法。

mimz02 数值线性代数(3 学分)

本课程首先简要回顾线性代数中的基础概念和理论。在此基础上将主要介绍数值计算中的常见问题, 如:问题的条件数及算法稳定性分析、高斯消去法及lu分解、 gram-schmidt正交法、最小二乘问题、特征值问题、奇异值分解以及基本的迭代法等,并同步介绍相关算法的实现。

mimz03 数据科学开源工具(3 学分)

本课程将主要讲授python语言的基本语法以及控制结构,进而介绍数据分析中常用的模块如:numpy, pandas, mathplotlib, sqlit3, sklearn等的使用。最后介绍应用python来进行常见的数据分析操作,如抓取网络数据、正则表达式、存储数据及访问,回归与分类,聚类分析,pca主成分分析,以及时间序列分析与预测等。此外,本课程也将涵盖其他开源工具的使用,包括sql语句、shell编程、julia程序语言、opencv等。

mimz04 应用统计分析(3 学分)

本课程将主要介绍数据科学中常用的概率统计模型和方法,如概率论的基础理论,随机事件的概率问题,数字特征,统计量,离散型和连续型随机变量的分布模型,数据收集和分类,大数定理和中心极限定理,点估计和区间估计,常用假设检验法,回归模型,方差分析,多元统计分析,贝叶斯统计等。

mimz05 数据挖掘(3 学分)

本课程介绍最新的数据挖掘技术及其应用。 本课程的宗旨是帮助学生了解数据挖掘技术的原则和重要性,主要关注数据挖掘的技术发展及其相关学科,如人工智能和机器学习。本课程的主题包括数据科学的概念和技术,如数据统计描述、数据可视化、数据预处理、数据仓库、频繁的模式挖掘和关联规则分析、分类和监督学习、聚类和非监督学习、变量选择。此外,通过 python 实现相关算法也是必要的。

mimz06 机器学习(3 学分)

本课程将广泛地介绍机器学习、数据挖掘、统计模式识别等内容。主题包括:(一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。(二)无监督学习(聚类,降维,推荐系统,深度学习推荐)。(三)在机器学习的最佳实践。

mimz07 时间序列分析(3 学分)

本课程为学生全面介绍时间序列分析的基础知识和分析实际数据的方法。课程将学习时间序列的分解、滑动平均、指数滑动平均等方法,以及相关系数、平稳性等基础知识。另外,课程将介绍巴斯扩散模型、holt-winters 指数平滑模型、一般线性模型、harmonic季节模型、随机游走、滑动平均过程、自回归过程、自回归条件异方差模型等传统时间序列模型。课程中的模型都会用来拟合实际的数据,帮助对模型更好地理解和使用。将采用r语言来做图和分析数据。这些内容有助于时间序列理论研究和解释现实世界的数据。

选修科目:

mime01 应用数学高级专题(3 学分)

本课程将主要介绍应用数学中的实用专题,例如数学物理反问题的计算方法。课程主要涵盖截断奇异值分解、tikhonov正则化方法、变分正则化,以及统计反问题计算方法(马尔可夫链蒙特卡洛采样以及贝叶斯推断)等一系列数学反问题常用方法。另外,课程也会介绍一些数学反问题的实际应用,包括ct、卷积与图像去模糊应用等。

mime02 数据科学高级专题(3 学分)

本课程介绍数据科学的最新理论和应用, 如深度学习及其在计算机视觉和自然语言处理中的应用。深度学习是机器学习的一个分支,它与现代神经网络的发展和应用有关。深度学习算法以最大化给定任务的性能的方式提取数据分层高级表示形式。课程将涵盖一系列主题,从基本神经网络、卷积和循环网络结构、深度无监督和强化学习,以及应用到自然语言处理和计算机视觉等领域。

mime03 数据科学程序设计(3 学分)

本课程重点介绍基于深度学习的算法、模型以及编程实践。课程采用pytorch作为深度学习框架, 涵盖numpy、pandas、机器学习理论、测试/训练/验证数据拆分、模型评估、张量、神经网络理论(感知机、网络、激活函数、成本/损失函数、反向传播、梯度)、人工/深度神经网络(ann / dnn),卷积神经网络(cnn),循环神经网络(rnn,lstm,gru),自然语言处理以及pytorch中使用gpu训练等内容。

mime04 数码图像处理 (3 学分)

本课程旨在介绍数码图像处理及模式识别的基本原理、方法及其应用。内容包括数码图像的预处理、特征提取、分析;统计模式识别,结构模式识别及其在不同领域中的应用。学生应根据所学内容,选读相关论文并给出相应报告。

mime05 数据可视化与可视分析 (3 学分)

本课程将主要介绍数据分析处理中常用的可视化技术, 包含对不同特征分布的数据进行多纬度展示,学习常用的python绘图模块如matplotlib与seaborn等。

mime06 数据仓库与数据挖掘 (3 学分)

本课程旨在介绍数据仓库和数据挖掘的基本原理和技术,内容包括数据仓库(data warehouse)和联机分析(olap)技术,数据预处理技术(数据的清理、集成、转换和归约),数据挖掘技术(分类、预测、关联和聚类),以及数据挖掘的应用和发展趋势。

mime07 随机过程 (3 学分)

随机过程主要研究随时间变化的随机现象。本科目从工程应用的角度讲授随机过程的基本理论及其应用。内容主要包括随机过程的基本概念、泊松过程、更新过程、马尔可夫链、排队论等。本课程培养学生使用随机过程理论对随机现象进行建模分析的能力。

mime08 多媒体信号与系统 (3 学分)

本科目将介绍多媒体信号的表达与处理技术, 包括各种表达多媒体信号的方法, 如: 时域, 频域, 时-频域及特征域。这些表达都可用于多媒体信号的区分。亦会讨论多媒体信号的滤波设计以及一些自适应的处理技术, 如隐藏markov模型, 随机场模型, 状态空间模型等。

mime09 数据库系统 (3 学分)

本科目介绍有关数据库设计、实现和管理的基本理论。希望学生们通过这门课程的学习能够:正确理解有关数据库设计的概念,并且可以按照数据库设计的步骤来完成设计;利用现有的关系数据库管理系统来实现相应的数据库设计方案;对于已经建立好的数据库进行管理和维护,实现资源共享,同时维护数据的一致性。并介绍空间数据库的概念与原理。

研究院办公室:
澳门氹仔伟龙马路
澳门科技大学a座二楼206室
电话 : ( 853) 8897-2240
电邮 :
传真 : ( 853) 2882-3280

网站地图